MakeItFrom.com
Menu (ESC)

8079 Aluminum vs. CC762S Brass

8079 aluminum belongs to the aluminum alloys classification, while CC762S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8079 aluminum and the bottom bar is CC762S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 2.2
7.3
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 150
840
Tensile Strength: Yield (Proof), MPa 120
540

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 650
920
Melting Onset (Solidus), °C 640
870
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 230
51
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
28
Electrical Conductivity: Equal Weight (Specific), % IACS 190
32

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
24
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 8.2
3.1
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
54
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1290
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 15
29
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 92
15
Thermal Shock Resistance, points 6.4
27

Alloy Composition

Aluminum (Al), % 98.1 to 99.3
3.0 to 7.0
Antimony (Sb), % 0
0 to 0.030
Copper (Cu), % 0 to 0.050
57 to 67
Iron (Fe), % 0.7 to 1.3
1.5 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0
2.5 to 5.0
Nickel (Ni), % 0
0 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.050 to 0.3
0 to 0.1
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
13.4 to 36
Residuals, % 0 to 0.15
0