MakeItFrom.com
Menu (ESC)

8079 Aluminum vs. Grade CX2MW Nickel

8079 aluminum belongs to the aluminum alloys classification, while grade CX2MW nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8079 aluminum and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 2.2
34
Fatigue Strength, MPa 56
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 150
620
Tensile Strength: Yield (Proof), MPa 120
350

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1550
Melting Onset (Solidus), °C 640
1490
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 230
10
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 190
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
65
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.2
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1
180
Resilience: Unit (Modulus of Resilience), kJ/m3 110
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 15
19
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 92
2.7
Thermal Shock Resistance, points 6.4
17

Alloy Composition

Aluminum (Al), % 98.1 to 99.3
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20 to 22.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0.7 to 1.3
2.0 to 6.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
51.3 to 63
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.050 to 0.3
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0