MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. ACI-ASTM CF8C Steel

8090 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF8C steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is ACI-ASTM CF8C steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
40
Fatigue Strength, MPa 91 to 140
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 340 to 490
530
Tensile Strength: Yield (Proof), MPa 210 to 420
260

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 600
1430
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 95 to 160
16
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
19
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
3.7
Embodied Energy, MJ/kg 170
53
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
180
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
19
Strength to Weight: Bending, points 39 to 50
19
Thermal Diffusivity, mm2/s 36 to 60
4.3
Thermal Shock Resistance, points 15 to 22
11

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
61.8 to 73
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
9.0 to 12
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0