MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. EN 1.8523 Steel

8090 aluminum belongs to the aluminum alloys classification, while EN 1.8523 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is EN 1.8523 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 3.5 to 13
15
Fatigue Strength, MPa 91 to 140
530
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
74
Tensile Strength: Ultimate (UTS), MPa 340 to 490
1000
Tensile Strength: Yield (Proof), MPa 210 to 420
800

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
480
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 66
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 18
4.2
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
2.2
Embodied Energy, MJ/kg 170
31
Embodied Water, L/kg 1160
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
140
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
1700
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34 to 49
36
Strength to Weight: Bending, points 39 to 50
28
Thermal Diffusivity, mm2/s 36 to 60
10
Thermal Shock Resistance, points 15 to 22
29

Alloy Composition

Aluminum (Al), % 93 to 98.4
0
Carbon (C), % 0
0.35 to 0.45
Chromium (Cr), % 0 to 0.1
3.0 to 3.5
Copper (Cu), % 1.0 to 1.6
0
Iron (Fe), % 0 to 0.3
93.5 to 95.7
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.7
Molybdenum (Mo), % 0
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0