MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. Grade 5 Titanium

8090 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Elongation at Break, % 3.5 to 13
8.6 to 11
Fatigue Strength, MPa 91 to 140
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 340 to 490
1000 to 1190
Tensile Strength: Yield (Proof), MPa 210 to 420
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 660
1610
Melting Onset (Solidus), °C 600
1650
Specific Heat Capacity, J/kg-K 960
560
Thermal Conductivity, W/m-K 95 to 160
6.8
Thermal Expansion, µm/m-K 24
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 66
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 18
36
Density, g/cm3 2.7
4.4
Embodied Carbon, kg CO2/kg material 8.6
38
Embodied Energy, MJ/kg 170
610
Embodied Water, L/kg 1160
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 34 to 49
62 to 75
Strength to Weight: Bending, points 39 to 50
50 to 56
Thermal Diffusivity, mm2/s 36 to 60
2.7
Thermal Shock Resistance, points 15 to 22
76 to 91

Alloy Composition

Aluminum (Al), % 93 to 98.4
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 1.0 to 1.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.3
0 to 0.4
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.1
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0
0 to 0.4