MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. ACI-ASTM CB30 Steel

850.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45
210
Elastic (Young's, Tensile) Modulus, GPa 69
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 140
500
Tensile Strength: Yield (Proof), MPa 76
230

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 190
940
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 370
1380
Specific Heat Capacity, J/kg-K 850
480
Thermal Conductivity, W/m-K 180
21
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 14
10
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.5
2.3
Embodied Energy, MJ/kg 160
33
Embodied Water, L/kg 1160
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 42
140
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 12
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 69
5.6
Thermal Shock Resistance, points 6.1
17

Alloy Composition

Aluminum (Al), % 88.3 to 93.1
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0.7 to 1.3
0 to 1.2
Iron (Fe), % 0 to 0.7
72.9 to 82
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0.7 to 1.3
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0