MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. AWS E100C-K3

850.0 aluminum belongs to the aluminum alloys classification, while AWS E100C-K3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is AWS E100C-K3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 7.9
18
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 140
770
Tensile Strength: Yield (Proof), MPa 76
700

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 370
1410
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 180
48
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 14
3.4
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.7
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 1160
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
130
Resilience: Unit (Modulus of Resilience), kJ/m3 42
1290
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 12
27
Strength to Weight: Bending, points 19
24
Thermal Diffusivity, mm2/s 69
13
Thermal Shock Resistance, points 6.1
23

Alloy Composition

Aluminum (Al), % 88.3 to 93.1
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0.7 to 1.3
0 to 0.35
Iron (Fe), % 0 to 0.7
92.6 to 98.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0.7 to 1.3
0.5 to 2.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.7
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5