MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. AWS ERNiCrFe-5

850.0 aluminum belongs to the aluminum alloys classification, while AWS ERNiCrFe-5 belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is AWS ERNiCrFe-5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 7.9
34
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 140
630

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 370
1340
Specific Heat Capacity, J/kg-K 850
450
Thermal Conductivity, W/m-K 180
14
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 14
65
Density, g/cm3 3.1
8.5
Embodied Carbon, kg CO2/kg material 8.5
11
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1160
250

Common Calculations

Stiffness to Weight: Axial, points 12
12
Stiffness to Weight: Bending, points 44
23
Strength to Weight: Axial, points 12
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 69
3.6
Thermal Shock Resistance, points 6.1
19

Alloy Composition

Aluminum (Al), % 88.3 to 93.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 0.12
Copper (Cu), % 0.7 to 1.3
0 to 0.5
Iron (Fe), % 0 to 0.7
6.0 to 10
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0.7 to 1.3
70 to 78.5
Niobium (Nb), % 0
1.5 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.7
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0
0 to 0.5