MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. C47000 Brass

850.0 aluminum belongs to the aluminum alloys classification, while C47000 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is C47000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 7.9
36
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 140
380
Tensile Strength: Yield (Proof), MPa 76
150

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 190
120
Melting Completion (Liquidus), °C 650
900
Melting Onset (Solidus), °C 370
890
Specific Heat Capacity, J/kg-K 850
390
Thermal Conductivity, W/m-K 180
120
Thermal Expansion, µm/m-K 23
21

Otherwise Unclassified Properties

Base Metal Price, % relative 14
23
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.5
2.7
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 1160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
110
Resilience: Unit (Modulus of Resilience), kJ/m3 42
100
Stiffness to Weight: Axial, points 12
7.2
Stiffness to Weight: Bending, points 44
20
Strength to Weight: Axial, points 12
13
Strength to Weight: Bending, points 19
15
Thermal Diffusivity, mm2/s 69
38
Thermal Shock Resistance, points 6.1
13

Alloy Composition

Aluminum (Al), % 88.3 to 93.1
0 to 0.010
Copper (Cu), % 0.7 to 1.3
57 to 61
Iron (Fe), % 0 to 0.7
0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0.7 to 1.3
0
Silicon (Si), % 0 to 0.7
0
Tin (Sn), % 5.5 to 7.0
0.25 to 1.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0
37.5 to 42.8
Residuals, % 0
0 to 0.4