MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. N06110 Nickel

850.0 aluminum belongs to the aluminum alloys classification, while N06110 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 7.9
53
Fatigue Strength, MPa 59
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
84
Shear Strength, MPa 100
530
Tensile Strength: Ultimate (UTS), MPa 140
730
Tensile Strength: Yield (Proof), MPa 76
330

Thermal Properties

Latent Heat of Fusion, J/g 380
340
Maximum Temperature: Mechanical, °C 190
1020
Melting Completion (Liquidus), °C 650
1490
Melting Onset (Solidus), °C 370
1440
Specific Heat Capacity, J/kg-K 850
440
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 14
65
Density, g/cm3 3.1
8.6
Embodied Carbon, kg CO2/kg material 8.5
11
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
320
Resilience: Unit (Modulus of Resilience), kJ/m3 42
260
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 44
23
Strength to Weight: Axial, points 12
23
Strength to Weight: Bending, points 19
21
Thermal Shock Resistance, points 6.1
20

Alloy Composition

Aluminum (Al), % 88.3 to 93.1
0 to 1.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
28 to 33
Copper (Cu), % 0.7 to 1.3
0 to 0.5
Iron (Fe), % 0 to 0.7
0 to 1.0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0.7 to 1.3
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0
Residuals, % 0 to 0.3
0