MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. S41425 Stainless Steel

850.0 aluminum belongs to the aluminum alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 45
280
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 7.9
17
Fatigue Strength, MPa 59
450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 100
570
Tensile Strength: Ultimate (UTS), MPa 140
920
Tensile Strength: Yield (Proof), MPa 76
750

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 190
810
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 370
1410
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 180
16
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 14
13
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.5
2.9
Embodied Energy, MJ/kg 160
40
Embodied Water, L/kg 1160
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
150
Resilience: Unit (Modulus of Resilience), kJ/m3 42
1420
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 12
33
Strength to Weight: Bending, points 19
27
Thermal Diffusivity, mm2/s 69
4.4
Thermal Shock Resistance, points 6.1
33

Alloy Composition

Aluminum (Al), % 88.3 to 93.1
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 0.7 to 1.3
0 to 0.3
Iron (Fe), % 0 to 0.7
74 to 81.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0.7 to 1.3
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0