MakeItFrom.com
Menu (ESC)

851.0 Aluminum vs. AWS ER90S-B9

851.0 aluminum belongs to the aluminum alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 851.0 aluminum and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 3.9 to 9.1
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 130 to 140
690

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 360
1410
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 180
25
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 14
7.0
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.4
2.6
Embodied Energy, MJ/kg 160
37
Embodied Water, L/kg 1140
91

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 12 to 13
25
Strength to Weight: Bending, points 19 to 20
22
Thermal Diffusivity, mm2/s 69
6.9
Thermal Shock Resistance, points 6.1 to 6.3
19

Alloy Composition

Aluminum (Al), % 86.6 to 91.5
0 to 0.040
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 0.7 to 1.3
0 to 0.2
Iron (Fe), % 0 to 0.7
84.4 to 90.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0.3 to 0.7
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 2.0 to 3.0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5