MakeItFrom.com
Menu (ESC)

851.0 Aluminum vs. EN 1.4872 Stainless Steel

851.0 aluminum belongs to the aluminum alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 851.0 aluminum and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.9 to 9.1
28
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 130 to 140
950

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 180
1150
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 360
1340
Specific Heat Capacity, J/kg-K 850
490
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 14
17
Density, g/cm3 3.1
7.6
Embodied Carbon, kg CO2/kg material 8.4
3.3
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 1140
180

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
26
Strength to Weight: Axial, points 12 to 13
35
Strength to Weight: Bending, points 19 to 20
28
Thermal Diffusivity, mm2/s 69
3.9
Thermal Shock Resistance, points 6.1 to 6.3
21

Alloy Composition

Aluminum (Al), % 86.6 to 91.5
0
Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0.7 to 1.3
0
Iron (Fe), % 0 to 0.7
54.2 to 61.6
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
8.0 to 10
Nickel (Ni), % 0.3 to 0.7
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 2.0 to 3.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0