MakeItFrom.com
Menu (ESC)

851.0 Aluminum vs. N08120 Nickel

851.0 aluminum belongs to the aluminum alloys classification, while N08120 nickel belongs to the nickel alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 851.0 aluminum and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.9 to 9.1
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 130 to 140
700

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 360
1370
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 180
11
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 14
45
Density, g/cm3 3.1
8.2
Embodied Carbon, kg CO2/kg material 8.4
7.2
Embodied Energy, MJ/kg 160
100
Embodied Water, L/kg 1140
240

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 12 to 13
24
Strength to Weight: Bending, points 19 to 20
21
Thermal Diffusivity, mm2/s 69
3.0
Thermal Shock Resistance, points 6.1 to 6.3
17

Alloy Composition

Aluminum (Al), % 86.6 to 91.5
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0.7 to 1.3
0 to 0.5
Iron (Fe), % 0 to 0.7
21 to 41.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0.3 to 0.7
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.0 to 3.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Residuals, % 0 to 0.3
0