MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. ACI-ASTM CA28MWV Steel

852.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA28MWV steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
330
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
11
Fatigue Strength, MPa 73
470
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 200
1080
Tensile Strength: Yield (Proof), MPa 150
870

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 190
740
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 210
1430
Specific Heat Capacity, J/kg-K 840
470
Thermal Conductivity, W/m-K 180
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 3.2
7.9
Embodied Carbon, kg CO2/kg material 8.5
3.1
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1920
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 17
38
Strength to Weight: Bending, points 24
30
Thermal Diffusivity, mm2/s 65
6.6
Thermal Shock Resistance, points 8.7
40

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0.2 to 0.28
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 1.7 to 2.3
0
Iron (Fe), % 0 to 0.7
81.4 to 85.8
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0.9 to 1.5
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Residuals, % 0 to 0.3
0