MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. ASTM A182 Grade F24

852.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F24 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is ASTM A182 grade F24.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
210
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4
23
Fatigue Strength, MPa 73
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 130
420
Tensile Strength: Ultimate (UTS), MPa 200
670
Tensile Strength: Yield (Proof), MPa 150
460

Thermal Properties

Latent Heat of Fusion, J/g 370
260
Maximum Temperature: Mechanical, °C 190
460
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 210
1430
Specific Heat Capacity, J/kg-K 840
470
Thermal Conductivity, W/m-K 180
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 15
4.0
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
2.3
Embodied Energy, MJ/kg 160
33
Embodied Water, L/kg 1150
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
140
Resilience: Unit (Modulus of Resilience), kJ/m3 160
570
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 43
24
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 24
22
Thermal Diffusivity, mm2/s 65
11
Thermal Shock Resistance, points 8.7
19

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
2.2 to 2.6
Copper (Cu), % 1.7 to 2.3
0
Iron (Fe), % 0 to 0.7
94.5 to 96.1
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0.9 to 1.5
0
Nitrogen (N), % 0
0 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0.15 to 0.45
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0.060 to 0.1
Vanadium (V), % 0
0.2 to 0.3
Residuals, % 0 to 0.3
0