MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. ASTM Grade HI Steel

852.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HI steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is ASTM grade HI steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
160
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
11
Fatigue Strength, MPa 73
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 200
550
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 370
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 210
1350
Specific Heat Capacity, J/kg-K 840
490
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
23
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
4.1
Embodied Energy, MJ/kg 160
59
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
52
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 17
20
Strength to Weight: Bending, points 24
19
Thermal Diffusivity, mm2/s 65
3.9
Thermal Shock Resistance, points 8.7
12

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0.2 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 1.7 to 2.3
0
Iron (Fe), % 0 to 0.7
46.9 to 59.8
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.9 to 1.5
14 to 18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0