MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. ASTM Grade HL Steel

852.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
150
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
11
Fatigue Strength, MPa 73
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 200
500
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 370
320
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 210
1340
Specific Heat Capacity, J/kg-K 840
490
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 15
27
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
4.5
Embodied Energy, MJ/kg 160
65
Embodied Water, L/kg 1150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
48
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 24
18
Thermal Shock Resistance, points 8.7
11

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0
28 to 32
Copper (Cu), % 1.7 to 2.3
0
Iron (Fe), % 0 to 0.7
40.8 to 53.8
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.9 to 1.5
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0