MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. AWS E347

852.0 aluminum belongs to the aluminum alloys classification, while AWS E347 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is AWS E347.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 200
580

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 210
1380
Specific Heat Capacity, J/kg-K 840
480
Thermal Conductivity, W/m-K 180
16
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
19
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
3.7
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1150
150

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 65
4.2
Thermal Shock Resistance, points 8.7
15

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 1.7 to 2.3
0 to 0.75
Iron (Fe), % 0 to 0.7
61.9 to 72.5
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0.9 to 1.5
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0