MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. AWS ER80S-Ni1

852.0 aluminum belongs to the aluminum alloys classification, while AWS ER80S-Ni1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is AWS ER80S-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 200
630
Tensile Strength: Yield (Proof), MPa 150
530

Thermal Properties

Latent Heat of Fusion, J/g 370
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 210
1410
Specific Heat Capacity, J/kg-K 840
470
Thermal Conductivity, W/m-K 180
41
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.7
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.6
Embodied Energy, MJ/kg 160
21
Embodied Water, L/kg 1150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
160
Resilience: Unit (Modulus of Resilience), kJ/m3 160
740
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 43
24
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 65
11
Thermal Shock Resistance, points 8.7
19

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 1.7 to 2.3
0 to 0.35
Iron (Fe), % 0 to 0.7
95.3 to 98.8
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.35
Nickel (Ni), % 0.9 to 1.5
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.050
Residuals, % 0
0 to 0.5