MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. EN 1.4527 Stainless Steel

852.0 aluminum belongs to the aluminum alloys classification, while EN 1.4527 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is EN 1.4527 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
140
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
40
Fatigue Strength, MPa 73
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 200
480
Tensile Strength: Yield (Proof), MPa 150
190

Thermal Properties

Latent Heat of Fusion, J/g 370
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 210
1360
Specific Heat Capacity, J/kg-K 840
470
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 15
32
Density, g/cm3 3.2
8.1
Embodied Carbon, kg CO2/kg material 8.5
5.6
Embodied Energy, MJ/kg 160
78
Embodied Water, L/kg 1150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
150
Resilience: Unit (Modulus of Resilience), kJ/m3 160
95
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
24
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 24
17
Thermal Diffusivity, mm2/s 65
4.0
Thermal Shock Resistance, points 8.7
12

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 1.7 to 2.3
3.0 to 4.0
Iron (Fe), % 0 to 0.7
37.4 to 48.5
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.9 to 1.5
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0