MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. EN 1.4662 Stainless Steel

852.0 aluminum belongs to the aluminum alloys classification, while EN 1.4662 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
28
Fatigue Strength, MPa 73
430 to 450
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 130
520 to 540
Tensile Strength: Ultimate (UTS), MPa 200
810 to 830
Tensile Strength: Yield (Proof), MPa 150
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 190
1090
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 210
1380
Specific Heat Capacity, J/kg-K 840
480
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 15
16
Density, g/cm3 3.2
7.7
Embodied Carbon, kg CO2/kg material 8.5
3.2
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 1150
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
210
Resilience: Unit (Modulus of Resilience), kJ/m3 160
840 to 940
Stiffness to Weight: Axial, points 12
15
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 17
29 to 30
Strength to Weight: Bending, points 24
25
Thermal Diffusivity, mm2/s 65
3.9
Thermal Shock Resistance, points 8.7
22

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 1.7 to 2.3
0.1 to 0.8
Iron (Fe), % 0 to 0.7
62.6 to 70.2
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0.9 to 1.5
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0