MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. EN 1.4835 Stainless Steel

852.0 aluminum belongs to the aluminum alloys classification, while EN 1.4835 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is EN 1.4835 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
180
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
43
Fatigue Strength, MPa 73
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 130
520
Tensile Strength: Ultimate (UTS), MPa 200
750
Tensile Strength: Yield (Proof), MPa 150
350

Thermal Properties

Latent Heat of Fusion, J/g 370
320
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 210
1360
Specific Heat Capacity, J/kg-K 840
490
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
17
Density, g/cm3 3.2
7.7
Embodied Carbon, kg CO2/kg material 8.5
3.3
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 1150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
270
Resilience: Unit (Modulus of Resilience), kJ/m3 160
310
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 17
27
Strength to Weight: Bending, points 24
24
Thermal Diffusivity, mm2/s 65
4.0
Thermal Shock Resistance, points 8.7
16

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 1.7 to 2.3
0
Iron (Fe), % 0 to 0.7
62 to 68.4
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0.9 to 1.5
10 to 12
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
1.4 to 2.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0