MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. EN 1.7221 Steel

852.0 aluminum belongs to the aluminum alloys classification, while EN 1.7221 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is EN 1.7221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
200 to 230
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4
11 to 17
Fatigue Strength, MPa 73
290 to 390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 200
650 to 780
Tensile Strength: Yield (Proof), MPa 150
430 to 630

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 210
1420
Specific Heat Capacity, J/kg-K 840
470
Thermal Conductivity, W/m-K 180
44
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.4
Density, g/cm3 3.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.5
Embodied Energy, MJ/kg 160
20
Embodied Water, L/kg 1150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
83 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 160
490 to 1050
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 43
24
Strength to Weight: Axial, points 17
23 to 27
Strength to Weight: Bending, points 24
21 to 24
Thermal Diffusivity, mm2/s 65
12
Thermal Shock Resistance, points 8.7
19 to 23

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0.22 to 0.29
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 1.7 to 2.3
0
Iron (Fe), % 0 to 0.7
96.8 to 98.3
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.8
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0.9 to 1.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0