MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. EN AC-42200 Aluminum

Both 852.0 aluminum and EN AC-42200 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
89 to 100
Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 3.4
3.0 to 6.7
Fatigue Strength, MPa 73
86 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 200
320
Tensile Strength: Yield (Proof), MPa 150
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 370
500
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 210
600
Specific Heat Capacity, J/kg-K 840
910
Thermal Conductivity, W/m-K 180
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
40
Electrical Conductivity: Equal Weight (Specific), % IACS 130
140

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 3.2
2.6
Embodied Carbon, kg CO2/kg material 8.5
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1150
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 160
410 to 490
Stiffness to Weight: Axial, points 12
15
Stiffness to Weight: Bending, points 43
53
Strength to Weight: Axial, points 17
34 to 35
Strength to Weight: Bending, points 24
40 to 41
Thermal Diffusivity, mm2/s 65
66
Thermal Shock Resistance, points 8.7
15

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
91 to 93.1
Copper (Cu), % 1.7 to 2.3
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 0.19
Magnesium (Mg), % 0.6 to 0.9
0.45 to 0.7
Manganese (Mn), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0.9 to 1.5
0
Silicon (Si), % 0 to 0.4
6.5 to 7.5
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1