MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. EN AC-43100 Aluminum

Both 852.0 aluminum and EN AC-43100 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is EN AC-43100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
60 to 94
Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 3.4
1.1 to 2.5
Fatigue Strength, MPa 73
68 to 76
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 200
180 to 270
Tensile Strength: Yield (Proof), MPa 150
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 370
540
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 210
590
Specific Heat Capacity, J/kg-K 840
900
Thermal Conductivity, W/m-K 180
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
37
Electrical Conductivity: Equal Weight (Specific), % IACS 130
130

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 3.2
2.6
Embodied Carbon, kg CO2/kg material 8.5
7.8
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 160
66 to 360
Stiffness to Weight: Axial, points 12
15
Stiffness to Weight: Bending, points 43
54
Strength to Weight: Axial, points 17
20 to 29
Strength to Weight: Bending, points 24
28 to 36
Thermal Diffusivity, mm2/s 65
60
Thermal Shock Resistance, points 8.7
8.6 to 12

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
86.9 to 90.8
Copper (Cu), % 1.7 to 2.3
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.6 to 0.9
0.2 to 0.45
Manganese (Mn), % 0 to 0.1
0 to 0.45
Nickel (Ni), % 0.9 to 1.5
0 to 0.050
Silicon (Si), % 0 to 0.4
9.0 to 11
Tin (Sn), % 5.5 to 7.0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15