MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. C62500 Bronze

852.0 aluminum belongs to the aluminum alloys classification, while C62500 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 3.4
1.0
Fatigue Strength, MPa 73
460
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
42
Shear Strength, MPa 130
410
Tensile Strength: Ultimate (UTS), MPa 200
690
Tensile Strength: Yield (Proof), MPa 150
410

Thermal Properties

Latent Heat of Fusion, J/g 370
230
Maximum Temperature: Mechanical, °C 190
230
Melting Completion (Liquidus), °C 640
1050
Melting Onset (Solidus), °C 210
1050
Specific Heat Capacity, J/kg-K 840
460
Thermal Conductivity, W/m-K 180
47
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
10
Electrical Conductivity: Equal Weight (Specific), % IACS 130
11

Otherwise Unclassified Properties

Base Metal Price, % relative 15
26
Density, g/cm3 3.2
8.1
Embodied Carbon, kg CO2/kg material 8.5
3.3
Embodied Energy, MJ/kg 160
55
Embodied Water, L/kg 1150
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 160
750
Stiffness to Weight: Axial, points 12
7.8
Stiffness to Weight: Bending, points 43
20
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 24
22
Thermal Diffusivity, mm2/s 65
13
Thermal Shock Resistance, points 8.7
24

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
12.5 to 13.5
Copper (Cu), % 1.7 to 2.3
78.5 to 84
Iron (Fe), % 0 to 0.7
3.5 to 5.5
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0.9 to 1.5
0
Silicon (Si), % 0 to 0.4
0
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0
0 to 0.5