MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. C66300 Brass

852.0 aluminum belongs to the aluminum alloys classification, while C66300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 3.4
2.3 to 22
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 130
290 to 470
Tensile Strength: Ultimate (UTS), MPa 200
460 to 810
Tensile Strength: Yield (Proof), MPa 150
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 370
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
1050
Melting Onset (Solidus), °C 210
1000
Specific Heat Capacity, J/kg-K 840
380
Thermal Conductivity, W/m-K 180
110
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
25
Electrical Conductivity: Equal Weight (Specific), % IACS 130
26

Otherwise Unclassified Properties

Base Metal Price, % relative 15
29
Density, g/cm3 3.2
8.6
Embodied Carbon, kg CO2/kg material 8.5
2.8
Embodied Energy, MJ/kg 160
46
Embodied Water, L/kg 1150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 160
710 to 2850
Stiffness to Weight: Axial, points 12
7.2
Stiffness to Weight: Bending, points 43
19
Strength to Weight: Axial, points 17
15 to 26
Strength to Weight: Bending, points 24
15 to 22
Thermal Diffusivity, mm2/s 65
32
Thermal Shock Resistance, points 8.7
16 to 28

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 1.7 to 2.3
84.5 to 87.5
Iron (Fe), % 0 to 0.7
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0.9 to 1.5
0
Phosphorus (P), % 0
0 to 0.35
Silicon (Si), % 0 to 0.4
0
Tin (Sn), % 5.5 to 7.0
1.5 to 3.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5