MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. C76200 Nickel Silver

852.0 aluminum belongs to the aluminum alloys classification, while C76200 nickel silver belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is C76200 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 200
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 370
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
1030
Melting Onset (Solidus), °C 210
980
Specific Heat Capacity, J/kg-K 840
390
Thermal Conductivity, W/m-K 180
45
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 15
29
Density, g/cm3 3.2
8.2
Embodied Carbon, kg CO2/kg material 8.5
3.6
Embodied Energy, MJ/kg 160
57
Embodied Water, L/kg 1150
310

Common Calculations

Stiffness to Weight: Axial, points 12
7.8
Stiffness to Weight: Bending, points 43
20
Strength to Weight: Axial, points 17
13 to 27
Strength to Weight: Bending, points 24
14 to 23
Thermal Diffusivity, mm2/s 65
14
Thermal Shock Resistance, points 8.7
13 to 26

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0
Copper (Cu), % 1.7 to 2.3
57 to 61
Iron (Fe), % 0 to 0.7
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0.9 to 1.5
11 to 13.5
Silicon (Si), % 0 to 0.4
0
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0
24.2 to 32
Residuals, % 0
0 to 0.5