MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. C96800 Copper

852.0 aluminum belongs to the aluminum alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 3.4
3.4
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 200
1010
Tensile Strength: Yield (Proof), MPa 150
860

Thermal Properties

Latent Heat of Fusion, J/g 370
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 640
1120
Melting Onset (Solidus), °C 210
1060
Specific Heat Capacity, J/kg-K 840
390
Thermal Conductivity, W/m-K 180
52
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
10
Electrical Conductivity: Equal Weight (Specific), % IACS 130
10

Otherwise Unclassified Properties

Base Metal Price, % relative 15
34
Density, g/cm3 3.2
8.9
Embodied Carbon, kg CO2/kg material 8.5
3.4
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 1150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
33
Resilience: Unit (Modulus of Resilience), kJ/m3 160
3000
Stiffness to Weight: Axial, points 12
7.6
Stiffness to Weight: Bending, points 43
19
Strength to Weight: Axial, points 17
32
Strength to Weight: Bending, points 24
25
Thermal Diffusivity, mm2/s 65
15
Thermal Shock Resistance, points 8.7
35

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Copper (Cu), % 1.7 to 2.3
87.1 to 90.5
Iron (Fe), % 0 to 0.7
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0.050 to 0.3
Nickel (Ni), % 0.9 to 1.5
9.5 to 10.5
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5