MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. S38815 Stainless Steel

852.0 aluminum belongs to the aluminum alloys classification, while S38815 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is S38815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4
34
Fatigue Strength, MPa 73
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 130
410
Tensile Strength: Ultimate (UTS), MPa 200
610
Tensile Strength: Yield (Proof), MPa 150
290

Thermal Properties

Latent Heat of Fusion, J/g 370
370
Maximum Temperature: Mechanical, °C 190
860
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 210
1310
Specific Heat Capacity, J/kg-K 840
500
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 15
19
Density, g/cm3 3.2
7.5
Embodied Carbon, kg CO2/kg material 8.5
3.8
Embodied Energy, MJ/kg 160
54
Embodied Water, L/kg 1150
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
170
Resilience: Unit (Modulus of Resilience), kJ/m3 160
220
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 24
21
Thermal Shock Resistance, points 8.7
15

Alloy Composition

Aluminum (Al), % 86.6 to 91.3
0 to 0.3
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 1.7 to 2.3
0.75 to 1.5
Iron (Fe), % 0 to 0.7
56.1 to 67
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0.9 to 1.5
13 to 17
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
5.5 to 6.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0