MakeItFrom.com
Menu (ESC)

A201.0 Aluminum vs. 5056 Aluminum

Both A201.0 aluminum and 5056 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A201.0 aluminum and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 4.7
4.9 to 31
Fatigue Strength, MPa 97
140 to 200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 480
290 to 460
Tensile Strength: Yield (Proof), MPa 420
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 570
570
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
29
Electrical Conductivity: Equal Weight (Specific), % IACS 90
99

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.1
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
170 to 1220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 44
30 to 48
Strength to Weight: Bending, points 45
36 to 50
Thermal Diffusivity, mm2/s 46
53
Thermal Shock Resistance, points 21
13 to 20

Alloy Composition

Aluminum (Al), % 93.7 to 95.5
93 to 95.4
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 4.0 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.4
Magnesium (Mg), % 0.15 to 0.35
4.5 to 5.6
Manganese (Mn), % 0.2 to 0.4
0.050 to 0.2
Silicon (Si), % 0 to 0.050
0 to 0.3
Titanium (Ti), % 0.15 to 0.35
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15