MakeItFrom.com
Menu (ESC)

A201.0 Aluminum vs. 5086 Aluminum

Both A201.0 aluminum and 5086 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is A201.0 aluminum and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 4.7
1.7 to 20
Fatigue Strength, MPa 97
88 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 480
270 to 390
Tensile Strength: Yield (Proof), MPa 420
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
31
Electrical Conductivity: Equal Weight (Specific), % IACS 90
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
86 to 770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 44
28 to 40
Strength to Weight: Bending, points 45
34 to 44
Thermal Diffusivity, mm2/s 46
52
Thermal Shock Resistance, points 21
12 to 17

Alloy Composition

Aluminum (Al), % 93.7 to 95.5
93 to 96.3
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 4.0 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.5
Magnesium (Mg), % 0.15 to 0.35
3.5 to 4.5
Manganese (Mn), % 0.2 to 0.4
0.2 to 0.7
Silicon (Si), % 0 to 0.050
0 to 0.4
Titanium (Ti), % 0.15 to 0.35
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15