MakeItFrom.com
Menu (ESC)

A201.0 Aluminum vs. AISI 348H Stainless Steel

A201.0 aluminum belongs to the aluminum alloys classification, while AISI 348H stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A201.0 aluminum and the bottom bar is AISI 348H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.7
40
Fatigue Strength, MPa 97
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 480
580
Tensile Strength: Yield (Proof), MPa 420
230

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.1
3.9
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 44
21
Strength to Weight: Bending, points 45
20
Thermal Diffusivity, mm2/s 46
4.1
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 93.7 to 95.5
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
17 to 19
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.1
63.8 to 73.6
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.4
0 to 2.0
Nickel (Ni), % 0
9.0 to 13
Niobium (Nb), % 0
0.32 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.050
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0