MakeItFrom.com
Menu (ESC)

A201.0 Aluminum vs. ASTM Grade HT Steel

A201.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HT steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A201.0 aluminum and the bottom bar is ASTM grade HT steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.7
4.6
Fatigue Strength, MPa 97
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 480
500
Tensile Strength: Yield (Proof), MPa 420
270

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 570
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 90
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.1
5.4
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
19
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 44
18
Strength to Weight: Bending, points 45
18
Thermal Diffusivity, mm2/s 46
3.2
Thermal Shock Resistance, points 21
12

Alloy Composition

Aluminum (Al), % 93.7 to 95.5
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0
15 to 19
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.1
38.2 to 51.7
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.4
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0