MakeItFrom.com
Menu (ESC)

A201.0 Aluminum vs. EN 1.0033 Steel

A201.0 aluminum belongs to the aluminum alloys classification, while EN 1.0033 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A201.0 aluminum and the bottom bar is EN 1.0033 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.7
17 to 32
Fatigue Strength, MPa 97
120 to 140
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 480
300 to 330
Tensile Strength: Yield (Proof), MPa 420
150 to 200

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
53
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.1
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1150
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
48 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
63 to 100
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 44
10 to 12
Strength to Weight: Bending, points 45
13 to 14
Thermal Diffusivity, mm2/s 46
14
Thermal Shock Resistance, points 21
9.4 to 10

Alloy Composition

Aluminum (Al), % 93.7 to 95.5
0
Carbon (C), % 0
0 to 0.11
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.1
98.8 to 100
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.4
0 to 0.7
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.050
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0