MakeItFrom.com
Menu (ESC)

A201.0 Aluminum vs. EN 1.0471 Steel

A201.0 aluminum belongs to the aluminum alloys classification, while EN 1.0471 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A201.0 aluminum and the bottom bar is EN 1.0471 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.7
23
Fatigue Strength, MPa 97
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 480
580
Tensile Strength: Yield (Proof), MPa 420
380

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.2
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 44
20
Strength to Weight: Bending, points 45
20
Thermal Diffusivity, mm2/s 46
14
Thermal Shock Resistance, points 21
18

Alloy Composition

Aluminum (Al), % 93.7 to 95.5
0 to 0.060
Carbon (C), % 0
0 to 0.22
Copper (Cu), % 4.0 to 5.0
0 to 0.3
Iron (Fe), % 0 to 0.1
97.4 to 98.8
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.4
1.0 to 1.5
Niobium (Nb), % 0
0.015 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0