MakeItFrom.com
Menu (ESC)

A201.0 Aluminum vs. EN 1.4595 Stainless Steel

A201.0 aluminum belongs to the aluminum alloys classification, while EN 1.4595 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A201.0 aluminum and the bottom bar is EN 1.4595 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.7
29
Fatigue Strength, MPa 97
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 480
470
Tensile Strength: Yield (Proof), MPa 420
250

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 90
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.1
2.4
Embodied Energy, MJ/kg 150
34
Embodied Water, L/kg 1150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 44
17
Strength to Weight: Bending, points 45
17
Thermal Diffusivity, mm2/s 46
8.1
Thermal Shock Resistance, points 21
17

Alloy Composition

Aluminum (Al), % 93.7 to 95.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.1
81.3 to 85.8
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.4
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.6
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0