MakeItFrom.com
Menu (ESC)

A201.0 Aluminum vs. EN 1.5680 Steel

A201.0 aluminum belongs to the aluminum alloys classification, while EN 1.5680 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A201.0 aluminum and the bottom bar is EN 1.5680 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.7
23
Fatigue Strength, MPa 97
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 480
620
Tensile Strength: Yield (Proof), MPa 420
440

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
48
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
5.0
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.1
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1150
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
510
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 44
22
Strength to Weight: Bending, points 45
20
Thermal Diffusivity, mm2/s 46
13
Thermal Shock Resistance, points 21
18

Alloy Composition

Aluminum (Al), % 93.7 to 95.5
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.1
93.4 to 95
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.4
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 5.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.050
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0.15 to 0.35
0
Vanadium (V), % 0
0 to 0.050
Residuals, % 0 to 0.1
0