MakeItFrom.com
Menu (ESC)

A201.0 Aluminum vs. C66300 Brass

A201.0 aluminum belongs to the aluminum alloys classification, while C66300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A201.0 aluminum and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 4.7
2.3 to 22
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 480
460 to 810
Tensile Strength: Yield (Proof), MPa 420
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
1050
Melting Onset (Solidus), °C 570
1000
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
25
Electrical Conductivity: Equal Weight (Specific), % IACS 90
26

Otherwise Unclassified Properties

Base Metal Price, % relative 11
29
Density, g/cm3 3.0
8.6
Embodied Carbon, kg CO2/kg material 8.1
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
710 to 2850
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 44
15 to 26
Strength to Weight: Bending, points 45
15 to 22
Thermal Diffusivity, mm2/s 46
32
Thermal Shock Resistance, points 21
16 to 28

Alloy Composition

Aluminum (Al), % 93.7 to 95.5
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 4.0 to 5.0
84.5 to 87.5
Iron (Fe), % 0 to 0.1
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.4
0
Phosphorus (P), % 0
0 to 0.35
Silicon (Si), % 0 to 0.050
0
Tin (Sn), % 0
1.5 to 3.0
Titanium (Ti), % 0.15 to 0.35
0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5