MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. 224.0 Aluminum

Both A206.0 aluminum and 224.0 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is 224.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 4.2 to 10
4.0 to 10
Fatigue Strength, MPa 90 to 180
86 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 390 to 440
380 to 420
Tensile Strength: Yield (Proof), MPa 250 to 380
280 to 330

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 670
650
Melting Onset (Solidus), °C 550
550
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
32
Electrical Conductivity: Equal Weight (Specific), % IACS 90
95

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
16 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
540 to 770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
45
Strength to Weight: Axial, points 36 to 41
35 to 38
Strength to Weight: Bending, points 39 to 43
38 to 41
Thermal Diffusivity, mm2/s 48
47
Thermal Shock Resistance, points 17 to 19
17 to 18

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
93 to 95.2
Copper (Cu), % 4.2 to 5.0
4.5 to 5.5
Iron (Fe), % 0 to 0.1
0 to 0.1
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0.2 to 0.5
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.050
0 to 0.060
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.35
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.1

Comparable Variants