MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. 772.0 Aluminum

Both A206.0 aluminum and 772.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 4.2 to 10
6.3 to 8.4
Fatigue Strength, MPa 90 to 180
94 to 160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 390 to 440
260 to 320
Tensile Strength: Yield (Proof), MPa 250 to 380
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 670
630
Melting Onset (Solidus), °C 550
580
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
35
Electrical Conductivity: Equal Weight (Specific), % IACS 90
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
350 to 430
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
46
Strength to Weight: Axial, points 36 to 41
25 to 31
Strength to Weight: Bending, points 39 to 43
31 to 36
Thermal Diffusivity, mm2/s 48
58
Thermal Shock Resistance, points 17 to 19
11 to 14

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
91.2 to 93.2
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 4.2 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.1
0 to 0.15
Magnesium (Mg), % 0 to 0.15
0.6 to 0.8
Manganese (Mn), % 0 to 0.2
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.050
0 to 0.15
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0.1 to 0.2
Zinc (Zn), % 0 to 0.1
6.0 to 7.0
Residuals, % 0
0 to 0.15