MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. AWS E309Nb

A206.0 aluminum belongs to the aluminum alloys classification, while AWS E309Nb belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is AWS E309Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 4.2 to 10
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 390 to 440
620

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Melting Completion (Liquidus), °C 670
1420
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
25
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
4.4
Embodied Energy, MJ/kg 150
64
Embodied Water, L/kg 1150
180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 36 to 41
22
Strength to Weight: Bending, points 39 to 43
21
Thermal Diffusivity, mm2/s 48
4.0
Thermal Shock Resistance, points 17 to 19
16

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
22 to 25
Copper (Cu), % 4.2 to 5.0
0 to 0.75
Iron (Fe), % 0 to 0.1
54.8 to 64.8
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.050
12 to 14
Niobium (Nb), % 0
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0