MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. AWS E410

A206.0 aluminum belongs to the aluminum alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.2 to 10
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 390 to 440
580
Tensile Strength: Yield (Proof), MPa 250 to 380
440

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Melting Completion (Liquidus), °C 670
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
28
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 90
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
120
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
500
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 36 to 41
21
Strength to Weight: Bending, points 39 to 43
20
Thermal Diffusivity, mm2/s 48
7.5
Thermal Shock Resistance, points 17 to 19
16

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 4.2 to 5.0
0 to 0.75
Iron (Fe), % 0 to 0.1
82.2 to 89
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.050
0 to 0.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.050
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0