MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. AZ31B Magnesium

A206.0 aluminum belongs to the aluminum alloys classification, while AZ31B magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is AZ31B magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
45
Elongation at Break, % 4.2 to 10
5.6 to 12
Fatigue Strength, MPa 90 to 180
100 to 120
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
17
Shear Strength, MPa 260
130 to 160
Tensile Strength: Ultimate (UTS), MPa 390 to 440
240 to 270
Tensile Strength: Yield (Proof), MPa 250 to 380
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 390
350
Maximum Temperature: Mechanical, °C 170
150
Melting Completion (Liquidus), °C 670
600
Melting Onset (Solidus), °C 550
600
Specific Heat Capacity, J/kg-K 880
990
Thermal Conductivity, W/m-K 130
100
Thermal Expansion, µm/m-K 23
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
18
Electrical Conductivity: Equal Weight (Specific), % IACS 90
95

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.0
1.7
Embodied Carbon, kg CO2/kg material 8.0
23
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
970

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
13 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
170 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
70
Strength to Weight: Axial, points 36 to 41
39 to 44
Strength to Weight: Bending, points 39 to 43
50 to 55
Thermal Diffusivity, mm2/s 48
62
Thermal Shock Resistance, points 17 to 19
14 to 16

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
2.4 to 3.6
Calcium (Ca), % 0
0 to 0.040
Copper (Cu), % 4.2 to 5.0
0 to 0.050
Iron (Fe), % 0 to 0.1
0 to 0.050
Magnesium (Mg), % 0 to 0.15
93.6 to 97.1
Manganese (Mn), % 0 to 0.2
0.050 to 1.0
Nickel (Ni), % 0 to 0.050
0 to 0.0050
Silicon (Si), % 0 to 0.050
0 to 0.1
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0.5 to 1.5
Residuals, % 0
0 to 0.3