MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. Austempered Cast Iron

A206.0 aluminum belongs to the aluminum alloys classification, while austempered cast iron belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is austempered cast iron.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
270 to 490
Elastic (Young's, Tensile) Modulus, GPa 70
180
Elongation at Break, % 4.2 to 10
1.1 to 13
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
62 to 69
Tensile Strength: Ultimate (UTS), MPa 390 to 440
860 to 1800
Tensile Strength: Yield (Proof), MPa 250 to 380
560 to 1460

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Melting Completion (Liquidus), °C 670
1380
Melting Onset (Solidus), °C 550
1340
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 130
42
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.9
Density, g/cm3 3.0
7.5
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
19 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
880 to 3970
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 36 to 41
32 to 66
Strength to Weight: Bending, points 39 to 43
27 to 44
Thermal Diffusivity, mm2/s 48
11
Thermal Shock Resistance, points 17 to 19
25 to 53

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0 to 0.050
Arsenic (As), % 0
0 to 0.020
Carbon (C), % 0
3.4 to 3.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 4.2 to 5.0
0 to 0.8
Iron (Fe), % 0 to 0.1
89.6 to 94
Magnesium (Mg), % 0 to 0.15
0 to 0.040
Manganese (Mn), % 0 to 0.2
0.3 to 0.4
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0 to 0.050
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Selenium (Se), % 0
0 to 0.030
Silicon (Si), % 0 to 0.050
2.3 to 2.7
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0 to 0.020
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0