MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. EN 1.0348 Steel

A206.0 aluminum belongs to the aluminum alloys classification, while EN 1.0348 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is EN 1.0348 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
110
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.2 to 10
28
Fatigue Strength, MPa 90 to 180
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 260
250
Tensile Strength: Ultimate (UTS), MPa 390 to 440
380
Tensile Strength: Yield (Proof), MPa 250 to 380
220

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 670
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
50
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
91
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 36 to 41
13
Strength to Weight: Bending, points 39 to 43
15
Thermal Diffusivity, mm2/s 48
13
Thermal Shock Resistance, points 17 to 19
12

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0.020 to 0.2
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 4.2 to 5.0
0 to 0.3
Iron (Fe), % 0 to 0.1
97.5 to 99.98
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 0.050
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0