MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. EN 1.4887 Stainless Steel

A206.0 aluminum belongs to the aluminum alloys classification, while EN 1.4887 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is EN 1.4887 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
170
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 4.2 to 10
45
Fatigue Strength, MPa 90 to 180
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 260
400
Tensile Strength: Ultimate (UTS), MPa 390 to 440
580
Tensile Strength: Yield (Proof), MPa 250 to 380
300

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 670
1390
Melting Onset (Solidus), °C 550
1350
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 90
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
39
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
6.7
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
220
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 36 to 41
20
Strength to Weight: Bending, points 39 to 43
19
Thermal Diffusivity, mm2/s 48
3.2
Thermal Shock Resistance, points 17 to 19
14

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.1
34.2 to 45
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0 to 2.0
Nickel (Ni), % 0 to 0.050
33 to 37
Niobium (Nb), % 0
1.0 to 1.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.050
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0