MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. EN 1.5503 Steel

A206.0 aluminum belongs to the aluminum alloys classification, while EN 1.5503 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
120 to 160
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.2 to 10
12 to 17
Fatigue Strength, MPa 90 to 180
180 to 280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 260
270 to 320
Tensile Strength: Ultimate (UTS), MPa 390 to 440
400 to 520
Tensile Strength: Yield (Proof), MPa 250 to 380
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 670
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
52
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
200 to 490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 36 to 41
14 to 19
Strength to Weight: Bending, points 39 to 43
15 to 18
Thermal Diffusivity, mm2/s 48
14
Thermal Shock Resistance, points 17 to 19
12 to 15

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.16 to 0.2
Copper (Cu), % 4.2 to 5.0
0 to 0.25
Iron (Fe), % 0 to 0.1
98.4 to 99.239
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0.6 to 0.8
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0