MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. EN 1.8201 Steel

A206.0 aluminum belongs to the aluminum alloys classification, while EN 1.8201 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.2 to 10
20
Fatigue Strength, MPa 90 to 180
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 260
390
Tensile Strength: Ultimate (UTS), MPa 390 to 440
630
Tensile Strength: Yield (Proof), MPa 250 to 380
450

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
450
Melting Completion (Liquidus), °C 670
1500
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
2.5
Embodied Energy, MJ/kg 150
36
Embodied Water, L/kg 1150
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
110
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
530
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 36 to 41
22
Strength to Weight: Bending, points 39 to 43
20
Thermal Diffusivity, mm2/s 48
11
Thermal Shock Resistance, points 17 to 19
18

Alloy Composition

Aluminum (Al), % 93.9 to 95.7
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
1.9 to 2.6
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.1
93.6 to 96.2
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Nickel (Ni), % 0 to 0.050
0
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.050
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0